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Abstract
Spatiotemporal features and physics of vehicular traffic congestion occurring
due to heavy highway bottlenecks caused for example by bad weather
conditions or accidents are found based on simulations in the framework of
three-phase traffic theory. A model of a heavy bottleneck is presented. Under a
continuous non-limited increase in bottleneck strength, i.e., when the average
flow rate within a congested pattern allowed by the heavy bottleneck decreases
continuously up to zero, the evolution of the traffic phases in congested traffic,
synchronized flow and wide moving jams, is studied. It is found that at a small
enough flow rate within the congested pattern, the pattern exhibits a non-regular
structure: a pinch region of synchronized flow within the pattern disappears
and appears randomly over time; wide moving jams upstream of the pinch
region exhibit a complex non-regular dynamics in which the jams appear and
disappear randomly. At greater bottleneck strengths, wide moving jams merge
onto a mega-wide moving jam (mega-jam) within which low-speed patterns
with a complex non-regular spatiotemporal dynamics occur. We show that
when the bottleneck strength is great enough, only the mega-jam survives and
synchronized flow remains only within its downstream front separating free
flow and congested traffic. Theoretical results presented can explain why no
sequence of wide moving jams can often be distinguished in non-homogeneous
traffic congestion measured at very heavy bottlenecks caused by bad weather
conditions or accidents.

PACS numbers: 89.40.+k, 47.54.+r, 64.60.Cn, 64.60.Lx

1. Introduction

The physics of freeway traffic congestion is one of the most quickly developed fields of complex
spatiotemporal systems. In empirical observations, traffic breakdown (onset of congestion) in
free flow occurs mostly at bottlenecks associated with, e.g., on- and off-ramps. In congested
traffic, moving jams are observed [1–12]. A moving jam is a localized structure of great
vehicle density, spatially limited by two jam fronts; the jam propagates upstream; within the
jam vehicle speed is very low.
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Moving jams, which exhibit a characteristic jam feature [J] to propagate through
bottlenecks while maintaining the mean velocity of the downstream jam front, are called
wide moving jams [12].

In observations [12], traffic breakdown is associated with a local first-order phase transition
from free flow to synchronized flow (F → S transition) at the bottleneck; synchronized flow
[S] is defined as congested traffic that does not exhibit the feature [J]; in particular, the
downstream front of synchronized flow is often fixed at the bottleneck. Wide moving jams can
emerge spontaneously in synchronized flow (S → J transition) only, i.e., due to a sequence of
F → S → J transitions.

Moving jam emergence in synchronized flow leading to S → J transitions is called the
pinch effect occurring within an associated pinch region of synchronized flow [12]: (i) The
density increases and average speed decreases; narrow moving jams, which do not exhibit
the feature [J], appear in the pinch region. (ii) These jams propagate upstream growing in
their amplitude; as a result, S → J transitions occur, i.e., wide moving jams emerge. The
upstream boundary of the pinch region is a road location at which a narrow moving jam has
just transformed into a wide moving one. (iii) These locations can vary for different wide
moving jams, i.e., the pinch region width (in the longitudinal direction) depends on time. A
congested traffic pattern at an isolated bottleneck that exhibits this regular structure is called
a general pattern (GP). The increase in density of synchronized flow with the subsequent
emergence of growing narrow moving jams explains the terms pinch effect and pinch region
of synchronized flow within the GP.

Earlier traffic flow theories and models reviewed in [1–10], which are associated with the
so-called fundamental diagram approach to traffic flow modeling, cannot explain F → S → J
transitions and the pinch effect (see a criticism of the theories in [12, 15]). For this reason, the
author introduced a three-phase traffic theory (references in [12]) in which there are (i) the free
flow, (ii) synchronized flow and (iii) wide moving jam phases. The synchronized flow and wide
moving jam phases associated with congested traffic are defined via the empirical definitions
[S] and [J], respectively. The first three-phase traffic flow models showing the pinch effect
are stochastic microscopic models [16, 17]. Later, other three-phase traffic flow models were
developed [15, 18–22]. Recent simulation results in the framework of the author’s three-phase
traffic theory can be found in [23–28].

The spatiotemporal criteria for a wide moving jam [J] can be explained by a traffic flow
interruption that occurs when vehicles are in a standstill within the wide moving jam. A
sufficient criterion for this flow interruption within the jam is [13, 14]

Is = τmax

τ
(ac)
del

� 1, (1)

where τmax is the maximum time headway between two vehicles within a wide moving jam and
τ

(ac)
del is the mean time delay in vehicle acceleration at the downstream jam front from a vehicle

standstill; τ
(ac)
del determines the jam outflow; corresponding to empirical results τ

(ac)
del ≈ 1.5

–2 s [12].1 The flow interruption effect is a general effect for each wide moving jam. For this
reason, criterion (1) can be considered as a microscopic criterion for the wide moving jam
phase. If a congested traffic state is not related to the wide moving jam phase, i.e., criterion
(1) is not satisfied, then with certainty the state is associated with the synchronized flow phase.

1 At a given time instant t = t1, the time headway (time gap) between vehicles τ(t1) is defined as a time it takes
for a vehicle to reach a freeway location at which the bumper of the preceding vehicle is at the time instant t1. In
single-vehicle data measured at a road detector, t1 is the time at which the preceding vehicle leaves the detector whose
location is therefore related to the location of the bumper of the preceding vehicle in the time headway definition;
the time headway is equal to τ(t1) = t2 − t1, where t2 is the time at which the vehicle front has been recorded at the
detector.
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This is because congested traffic can be either within the synchronized flow phase or within
the wide moving jam phase. In numerical simulations has been found [14] that if in (1) Is > 5,
then a moving jam propagates through a bottleneck, i.e., this jam is a wide moving one.

In general, the average flow rate q(cong) within a congested traffic pattern upstream of a
bottleneck is the smaller, the greater the bottleneck influence of traffic (called the bottleneck
strength). The time interval of the averaging of the flow rate q(cong) is suggested to be
considerably longer than time distances between any moving jams within a congested pattern.
Empirical data show that the flow rate q(cong) within GPs occurring at usual bottlenecks like
on- and off-ramp bottlenecks, which is equal to the average flow rate in the pinch region
q(pinch), is approximately within a range

q(cong) = q(pinch) = 1100–1700 vehicles/h/lane. (2)

Features of GPs and other congested patterns occurring at usual bottlenecks determined
by road infrastructure (on- and off-ramps, road gradients, etc), for which condition (2) is valid,
have already been studied in detail [12]. In contrast with the usual bottlenecks, due to for
example bad weather conditions or accidents highway bottlenecks can occur, which exhibit a
much greater influence on traffic (greater bottleneck strength) that limits q(cong) to very small
values, sometimes as low as zero, when condition (2) is not satisfied. Such a bottleneck
can be called a heavy bottleneck. Features of traffic congestion at heavy bottlenecks are
unknown.

Some suggestions about these features can already be made from the following qualitative
consideration. Recent empirical studies of sequences of wide moving jams [13, 14] show that
in empirical data between flow interruption intervals, vehicles within a wide moving jam
exhibit time headways about 1.5–7 s [14]. These time headways are considerably shorter
than flow interruption intervals (τmax > 10 s, i.e., Is > 5 in (1)). When vehicles meet the
wide moving jam, firstly they decelerate at the upstream jam front to a standstill. Space
gaps between these vehicles can be very different, i.e., blanks (regions with no vehicles) can
appear within the jam. Later vehicles move covering these blanks. Consequently, due to this
low-speed vehicle motion new blanks between vehicles occur upstream, i.e., moving blanks
appear propagating upstream within the jam. In measured data, the average flow rate within
wide moving jams q(blanks) caused by a low-speed vehicle motion within the jams associated
with moving blanks satisfies an approximate condition

q(blanks) � 600 vehicles/h/lane. (3)

The average flow rate within wide moving jams q(blanks) is defined as a number of vehicles
N(blanks), which have passed a virtual road detector during time intervals of the propagation of
nJ wide moving jams (it is assumed that nJ � 1) through the detector, divided by the sum of
these time intervals,

q(blanks) = N(blanks)∑nJ
i=1 τ

(i)
J

, (4)

where τ
(i)
J is a duration of a ith wide moving jam, i.e., the time interval between the downstream

and upstream fronts of the jam i, while this jam propagates through the detector.
Between the wide moving jams, the average flow rate associated with non-interrupted

flows in the jam outflows q
(J)
out is greater than q(pinch) (2), i.e., q

(J)
out is considerably greater

than q(blanks) (3). Now we assume that due to bad weather conditions or an accident a heavy
bottleneck occurs with a great strength for which

q(cong) = q(blanks). (5)
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(a) (b)

Figure 1. Steady speed states for the Kerner–Klenov stochastic three-phase traffic flow in the
flow-density plane (a) and the line J (b). Taken from [12].

In this case, q
(J)
out must reduce to q(blanks) (3), i.e., the difference between flows within and

outside wide moving jams disappears. As a result, at

q(cong) � q(blanks) (6)

wide moving jams should merge into a mega-wide moving jam (mega-jam for short). Thus
already from this qualitative consideration, we can expect interesting physical phenomena
associated with the complexity of traffic congestion at heavy bottlenecks.

In this paper, we reveal these phenomena. The paper is organized as follows. In section 2,
we discuss a stochastic three-phase traffic flow model of [16, 29] as well as present a heavy
bottleneck model used for simulations of traffic congestion. A theory of the evolution of traffic
phases at heavy bottlenecks is presented in section 3. A microscopic spatiotemporal non-
regular dynamics of wide moving jams is presented in section 4. In section 5, a microscopic
spatiotemporal structure and dynamics of mega-jams are presented. An explanation of features
of traffic congestion at heavy bottlenecks found in sections 3–5 and a comparison of the
theoretical results with some measured traffic data as well as a summary of the key results are
made in section 6.

2. Model of road with heavy bottleneck

2.1. Two-lane stochastic three-phase traffic flow model

For a theoretical analysis of traffic congestion at heavy bottlenecks, we use a stochastic three-
phase traffic flow model of a two-lane road [16, 29]. Basic driver behavioral assumptions of
this Kerner–Klenov model are as follows:

(i) Fundamental hypothesis of three-phase traffic theory [12]. In synchronized flow, a driver
accepts a range of different hypothetical steady state speeds at the same space gap to
the preceding vehicle. This means that hypothetical steady model states of synchronized
flow cover a 2D-region in the flow-density plane (figure 1(a)). The boundaries of this
2D-region F,L and U are respectively associated with free flow, a synchronization space
gap, and a safe space gap determined through a safe speed. The 2D-region of steady
states is associated with a driver behavioral assumption that in synchronized flow a driver
is able to recognize whether the space gap is increasing or deceasing regardless of the
speed difference to the preceding vehicle.

(ii) Line J and 2D-region of steady states [12]. In the model, the line J , which represents in
the flow-density plane the steady propagation of the downstream front of a wide moving
jam (the slope of the line J is equal to the mean velocity of this jam front) [12], is between
the boundaries L and U (figure 1(b)), i.e., the line J divides the 2D-region of steady states
of synchronized flow onto two classes: the states on and above the line J and the states
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below the line J , which are metastable and stable states with respect to wide moving jam
formation, respectively. Thus at a given steady speed, a driver behavioral assumption is
that the space gap in synchronized flow associated with the line J , i.e., in the jam outflows
is greater than the safe gap and it is smaller than the synchronization gap.

(iii) Speed adaptation effect in synchronized flow [12]. The speed adaptation effect takes place
when the vehicle cannot pass the preceding vehicle, within the space gap range

gs,n � gn � Gn, (7)

where gn = x�,n − xn − d is the space gap, xn is the vehicle co-ordinate, the lower index
� marks functions and values related to the preceding vehicle; gs,n is the safe space gap
determined from the equation vn = vs,n, in which vn is the vehicle speed, vs,n is a safe
speed; Gn is a synchronization space gap; all vehicles have the same length d, which
includes the minimum space gap between vehicles within a wide moving jam; index n
corresponds to the discrete time t = nτ, n = 0, 1, 2, . . . ; τ is time step. Under condition
(7), the vehicle tends to adjust its speed to the preceding vehicle without caring, what
the precise space gap is, as long as it is safe. For example, at a given time-independent
speed of the preceding vehicle v�,n = v� = const, this speed adaptation leads to car
following with vn = v = v� at a time-independent space gap gn = g. There is an infinite
number of these gaps associated with the same speed v = v�. These gaps lie between
the synchronization gap and safe gap, i.e., there is no desired (or optimal) space gap in
synchronized flow.

(iv) Over-acceleration effect [12]. In synchronized flow of a lower density, a driver searches
for the opportunity to accelerate and to pass. A competition between the speed adaptation
(item (iii)) and over-acceleration effects simulates traffic breakdown (F → S transition).
The over-acceleration is simulated as a collective effect, which occurs on average in traffic
flow, through the use of random vehicle acceleration

ξa = aτ�(pa − r), (8)

where pa is probability of random acceleration, a is the maximum acceleration,
r = rand(0, 1),�(z) = 0 at z < 0 and �(z) = 1 at z � 0. The model fluctuations
(8) are applied only if the vehicle should accelerate without model fluctuations.

(v) Pinch effect in synchronized flow [12]. Moving in synchronized flow, a driver comes on
average closer to the preceding vehicle over time that should explain the pinch effect.
A driver time delay in deceleration simulates this effect through model fluctuations in
deceleration

bn = a�(P1 − r1), (9)

applied under condition (7) only; P1 is probability of random deceleration, r1 =
rand(0, 1).

(vi) Over-deceleration effect. As in the Nagel–Schreckenberg (NaSch) cellular automata CA
model [30], a well-known over-deceleration effect (human over-reaction) associated with
driver reaction time [31] is also simulated as a collective effect through the use of random
fluctuations in vehicle deceleration

ξb = aτ�(pb − r), (10)

which is applied only if the vehicle should decelerate without model fluctuations; pb is the
probability of random deceleration. In the Kerner–Klenov model, a competition between
the over-deceleration and the speed adaptation effect (item (iii)) determines moving jam
emergence in synchronized flow.

5



J. Phys. A: Math. Theor. 41 (2008) 215101 B S Kerner

(vii) Driver time delay in acceleration. In the model, this well-known effect should describe
driver delay in acceleration at the downstream front of synchronized flow or wide moving
jam (in the latter case, the driver delay in acceleration is known as a slow-to-start
rule [32]) after the preceding vehicle has begun to accelerate. A driver time delay in
acceleration is simulated as a collective effect through the use of a random value of vehicle
acceleration

an = a�(P0 − r1) (11)

applied under condition (7) and only then if the vehicle did not accelerate at the former
time step; in the latter case P0 = p0 > 0, i.e., a vehicle accelerates with some probability
p0 that depends on the speed vn; otherwise P0 = 0. As in the NaSch CA model [32], the
mean time in vehicle acceleration is

τ
(a)
del = τ

1 − p0
. (12)

Thus, the basis of the Kerner–Klenov stochastic three-phase traffic flow model are driver
behavioral assumptions made in three-phase traffic theory (items (i)–(v)) [12]. In addition,
over-deceleration (item (vi)) and driver time delay in acceleration (item (vii)) introduced
in earlier traffic flow models in the framework of the fundamental diagram approach have
also been incorporated; in particular, as in the NaSch CA model [30, 32], these driver time
delays appear through the use of model fluctuations. Finally, the Kerner–Klenov stochastic
three-phase traffic flow model reads as follows:

vn+1 = max(0, min(vfree, ṽn+1 + ξn, vn + aτ, vs,n)), (13)

xn+1 = xn + vn+1τ, (14)

ṽn+1 = max(0, min(vfree, vc,n, vs,n)), (15)

vc,n =
{

vn + �n at gn � Gn

vn + anτ at gn > Gn,
(16)

where

�n = max(−bnτ, min(anτ, v�,n − vn)), (17)

with vfree being the maximum speed in free flow that is constant.
The synchronization gap Gn depends on the vehicle speed vn and on the speed of the

preceding vehicle v�,n

Gn = G(vn, v�,n), (18)

where the function G(u,w) is chosen as

G(u,w) = max(0, kτu + φ0a
−1u(u − w)), (19)

k > 1 and φ0 are constants. If vn = v�,n, the synchronization gap Gn is kvnτ ; this corresponds
to a fixed time gap kτ that determines the line L in figure 1. If vn > v�,n, the gap Gn increases
and vice versa.

As explained in items (iv) and (vi), random deceleration and acceleration ξn in (13) are
applied depending on whether the vehicle decelerates or accelerates, or else maintains its
speed,

ξn =
⎧⎨
⎩

−ξb if Sn+1 = −1
ξa if Sn+1 = 1
0 if Sn+1 = 0,

(20)

6



J. Phys. A: Math. Theor. 41 (2008) 215101 B S Kerner

where S in (20) denotes the state of motion (Sn+1 = −1 represents deceleration, Sn+1 = 1
acceleration, and Sn+1 = 0 motion at nearly constant speed)

Sn+1 =
⎧⎨
⎩

−1 if ṽn+1 < vn − δ

1 if ṽn+1 > vn + δ

0 otherwise,
(21)

where δ is constant (δ � aτ).
In (11) and (9), the probabilities P0 and P1 are

P0 =
{
p0(vn) if Sn �= 1
1 if Sn = 1,

(22)

P1 =
{
p1 if Sn �= −1
p2(vn) if Sn = −1,

(23)

where speed functions for probabilities p0(vn) and p2(vn) are considered in [12]; p1 is constant.
The safe speed vs,n in (13) is chosen in the form

vs,n = min
(
v(safe)

n , gn

/
τ + v

(a)
�

)
, (24)

where v(safe)
n = v(safe)(gn, v�,n) [33] is a solution of the Gipps equation [34]

v(safe)τ (safe) + Xd(v
(safe)) = gn + Xd(v�,n), (25)

where τ (safe) is a safety time headway (safety time gap) to the preceding vehicle, Xd(u) is the
distance traveled by the vehicle with an initial speed u at a time-independent deceleration b
until it comes to a stop; v

(a)
� is an ‘anticipation’ speed of the preceding vehicle at the next time

step (formula (16.48) of [12]).
The following incentive conditions for lane changing from the right lane to the left lane

(R → L) and a return change from the left lane to the right lane (L → R) have been used in
the model:

R → L : v+
n � v�,n + δ1 and vn � v�,n, (26)

L → R : v+
n > v�,n + δ1 or v+

n > vn + δ1. (27)

The security conditions for lane changing are given by the inequalities:

g+
n > min

(
vnτ,G

+
n

)
, (28)

g−
n > min

(
v−

n τ,G−
n

)
, (29)

where

G+
n = G

(
vn, v

+
n

)
, (30)

G−
n = G

(
v−

n , vn

)
, (31)

the function G(u,w) is given by (19); the speed v+
n or the speed v�,n in (28), (29) is set to ∞

if the space gap g+
n or the space gap gn exceeds a given look-ahead distance La, respectively;

superscripts + and − in variables, parameters and functions denote the preceding vehicle and
the trailing vehicle in the ‘target’ (neighboring) lane, respectively. The target lane is the lane
into which the vehicle wants to change. If the conditions (26)–(29) are satisfied, the vehicle
changes lanes with probability pc. pc, δ1 (δ1 � 0), La are constants. These and other model
parameters in all simulations presented below are listed in table 16.11 of the book [12].
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2.2. Model of heavy bottleneck

To describe a heavy bottleneck, we suggest that there is a section of the road of a length LB

within which due to an accident or bad weather conditions drivers should increase a safety
time headway τ (safe) to the preceding vehicle as well as decrease the maximum speed to some
vB that is lower than the maximum speed in free flow vfree: within the section, the safety time
headway is equal to τ (safe) = TB > 1 s that is longer than τ (safe) = 1 s used in the model for
vehicles moving outside this section.

In according with equation (25) of the model, τ (safe) determines a safe speed, which should
not be exceeded by a driver; otherwise, the driver decelerates. As a result, within this section
drivers move with the mean time headway that is longer than the mean time headway outside
the bottleneck section and it is the longer, the longer τ (safe) = TB. Therefore the section with
longer τ (safe) = TB acts as a bottleneck on the road. In the bottleneck model, at given LB and
vB each chosen value TB defines a specific bottleneck: the strength of this bottleneck is the
greater, the longer TB; in turn, the longer TB, the smaller q(cong), i.e., the greater the flow rate
limitation within congestion caused by the bottleneck.

This model feature allows us to simulate a heavy bottleneck caused by bad weather
conditions or accidents leading to a long enough TB within the bottleneck, i.e., to a great
bottleneck strength. Under bad weather conditions, a road section with a long value TB can
be caused, e.g., by a poor view due to fog on the section or a much longer deceleration way
needed by snow and ice on the section. If an accident occurs on a road, a road section with a
long value TB can be caused, e.g., by much narrower lane widths allowed for driving on the
road section; the same effect can occur under heavy roadworks.

In simulations discussed in below, we consider traffic phenomena occurring when the
bottleneck strength increases gradually through the increase in TB, when other bottleneck
parameters are given constants (figure 2). However as simulations show, at a given TB the
increase in LB or/and decrease in vB lead also to an increase in the bottleneck strength with
the subsequent decrease in the average flow rate q(cong) in congested traffic upstream of the
bottleneck. For this reason, numerical values of TB mentioned below, at which characteristic
traffic phenomena occur at a heavy bottleneck, depend on LB and vB. In contrast, we find
that numerical values of the flow rate q(cong) at which the traffic phenomena occur at the
bottleneck do not change appreciably, when a greater value of LB or/and another value of
vB (in the range 50–80 km h−1) are chosen. For this reason, the flow rates q(cong) can be
considered characteristic values representing the bottleneck strength at given parameters of
the Kerner–Klenov model used in simulations (section 2.1).

3. Traffic phases in congested traffic at heavy bottlenecks

When the bottleneck strength is not great, i.e., TB is chosen to be not very long (TB = 1.8 s),
then at a great enough flow rate qin in free flow upstream of the bottleneck, firstly synchronized
flow occurs spontaneously at the bottleneck. Then the pinch region with a relatively great flow
rate q(cong) = q(pinch) is formed (figures 2(a) and 3). At the pinch region upstream boundary
wide moving jams emerge. Thus we found known phenomena of regular GP formation
(figures 2(a) and 4(a), (b)) [12]2. The pinch region width L(pinch)(t) changes over time
between about 1 km and 2 km (figure 5(a)). L(pinch) is defined as the distance between
the upstream boundary of the bottleneck (x = 16 km) and the road location upstream at
which a wide moving jam has just been identified through the use of the jam microscopic
criterion (1). There is also a nearly constant frequency of L(pinch)(t) oscillations associated

2 At TB < 1.5 s, rather than GPs, synchronized flow patterns (SP) are realized upstream of the bottleneck [12].
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(a)

(b)

(c)

(d)

Figure 2. Simulated speed in space and time in the left (figures left) and right (right) road lanes
at different TB: TB = 1.8 (a), 2.4 (b), 12 (c), 60 s (d). qin = 1946 vehicles/h/lane. The
upstream boundary of bottleneck region of the length LB = 300 m is at x = 16 km; the maximum
speed within this bottleneck region is vB = 60 km h−1. Resulting values of q(cong) = 1546 (a),
1114 (b), 440 (c), 127 vehicles/h/lane (d).

Figure 3. Simulated average flow rate q(cong) within congested patterns shown in figure 2 as a
function of TB. The averaging time interval for q(cong) is 60 min.

with the maximum in the Fourier spectrum (figure 5(b)). Speed autocorrelation functions and
associated Fourier spectra of speed time dependencies at shorter TB show regular character of
wide moving jam propagation (figure 4(c), (d)).

9
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(a) (b)

(c) (d)

(e) ( f )

(g)

(h)

(i ) ( j)

(k) (l )

(m) (n)

(o) ( p)

. .

. .

. .

. .

Figure 4. Simulated characteristics of congested patterns shown in figure 2 related to location
10 km. Time-functions of speed ((a), (e), (i), (m)), speed correlations ((c), (g), (k), (o)), associated
Fourier spectra ((d), (h), (l), (p)) and flow rate ((b), (f ), (j), (n)) for different TB = 1.8 (a)–(d),
2.4 (e)–(h), 12 (i)–(l), 60 s (m)–(p). 1 min average data in the left lane.

When TB becomes longer and therefore the bottleneck strength increases, the flow rate
q(cong) = q(pinch) decreases (figure 3). However, if TB remains a relatively small value
(1.8 < TB < 3 s), then as for other bottleneck types, we found the following known GP
features [12]: the smaller the flow rate q(pinch), the greater the frequency of narrow moving
jam emergence within the pinch region, the lower the maximum (and the average) speed
between wide moving jams upstream of the pinch region, the smaller the mean pinch region
width L

(pinch)
mean (figures 2(b) and 5(c), (d), (k), (l)). This can also be seen from a comparison

of time dependences of average speed within the region of wide moving jams for different TB

(figure 4(a), (e)).

10
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Qualitatively other phenomena are found when TB further increases (TB > 3 s) and the
average flow rate q(cong) decreases considerably (figures 2(c), (d) and 3).

We find that there is a critical strength of a heavy bottleneck associated with TB = T
(break)

B

that results in the critical flow rate q(cong) = q
(cong)

break . When

q(cong) � q
(cong)

break (32)

related to TB � T
(break)

B , then there are random time intervals when the pinch region disappears,
i.e., L(pinch) = 0 (figure 2(e), (g)). This means that there are time instants at which there is
no pinch region and wide moving jams emerge directly at the upstream boundary of the
bottleneck, whereas for other time intervals the pinch region appears again (figure 5(e), (g)).
We found that q

(cong)

break ≈ 920 vehicles/h/lane (T (break)
B ≈ 3 s at the chosen LB and vB, see the

caption to figure 2)3. Under condition (32), L(pinch)(t) becomes a non-regular time-function
(figure 5(e), (g), (i)) whose Fourier spectrum is the broader, the longer TB, i.e., the smaller
q(cong) (figure 5 (f ), (h), (j)). Such a GP at an isolated heavy bottleneck can be considered
the GP with a non-regular pinch region.

The more the bottleneck strength exceeds the critical bottleneck strength, the greater the
difference q

(cong)

break − q(cong) and the longer the mean duration of time intervals within which the
regular structure of the GP breaks and the pinch region disappears, and therefore, the smaller
the mean length L

(pinch)
mean of the pinch region (figure 5 (k), (l)). In contrast with regular time

dependences of the average speed within a sequence of wide moving jams (figure 4(a)–(h)),
the time-functions of 1 min average speed at a greater bottleneck strength exhibit a non-
regular behavior (figure 4(i)–(l)). This can be seen from speed autocorrelation functions and
associated Fourier spectra of the average speed time dependences (figure 4(k), (l)).

When the bottleneck strength increases further, L
(pinch)
mean decreases continuously (figure 5

(k), (l)). L
(pinch)
mean reaches zero at a threshold bottleneck strength for the pinch region existence

associated with TB = T
(th)

B that results in a threshold flow rate q(cong) = q
(cong)

th . When

q(cong) � q
(cong)

th (33)

related to TB � T
(th)

B , then the pinch region of GPs does not exist. At model parameters, the
pinch region of an GP disappears fully at q

(cong)

th ≈ 220 vehicles/h/lane (T (th)
B ≈ 30 s at the

chosen LB and vB).
There is also another critical bottleneck strength, which we call the critical bottleneck

strength for the mega-jam formation associated with TB = T
(mega)

B that results in the critical
flow rate q(cong) = q

(cong)
mega . When

q(cong) � q(cong)
mega (34)

related to TB � T
(mega)

B , then wide moving jams merge onto a mega-jam. Numerical
simulations show that (34) is equivalent to (6), i.e.,

q(cong)
mega = q(blanks). (35)

At model parameters, q(cong)
mega ≈ 130 vehicles/h/lane (T (mega)

B ≈ 60 s at the chosen LB and vB).

3 It should be noted that q
(cong)

break exhibits a probabilistic behavior: it is characterized by a given probability that the
regular structure of an GP breaks at least one time during a given time interval Tob for observing congested traffic.
The mentioned value q

(cong)

break is related to simulation results that with the probability, which is equal to one, a wide
moving jam emerges whose upstream front is between road locations 16 � x > 15.95 km (the pinch region width is
smaller than 50 m at least for one time interval), i.e., the regular structure of an GP breaks at least one time in each of
the 30 simulation runs made at the same model parameters during Tob = 120 min. For Tob = 60–120 min associated
with the duration of traffic congestion in real traffic, at the chosen model parameters the dependence q

(cong)

break (Tob) is
weak and it changes none of the qualitative results of the paper.
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(a)

(b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

(k) (l)

. .

. .

.

.

.

.

Figure 5. Simulations of pinch effect: L(pinch)(t) ((a), (c), (e), (g), (i)), associated Fourier
spectra ((b), (d), (f ), (h), (j)) for congested patterns related to TB = 1.8 ((a), (b)), 2.4 ((c), (d)),
6 ((e), (f )), 12 ((g), (h)) and 30 s ((i), (j)). ((k), (l)) L

(pinch)
mean (q(cong)) (k) and L

(pinch)
mean (TB) (l). For

TB = 6 and 30 s, q(cong) = 626 and 218 vehicles/h/lane, respectively.

We found also that the critical bottleneck strength for the mega-jam formation is greater
than the threshold bottleneck strength for the pinch region existence that results in the condition

q(cong)
mega < q

(cong)

th (36)

related to T
(mega)

B > T
(th)

B . Under condition (34), i.e., when all wide moving jams merge onto
a mega-jam, traffic congestion upstream of an isolated heavy bottleneck cannot be considered
as an GP any more. Thus in accordance with (34), (35), if traffic breakdown has occurred at a
bottleneck, then the condition

q(cong) > q(blanks) (37)

is a necessary condition for GP existence at this bottleneck.

12
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As for GPs with a very non-regular pinch region (figure 4(i)–(l)), the time-functions of
1 min average speed within the mega-jam exhibit a non-regular behavior (figure 4(m)); this
can be seen from speed autocorrelation functions and associated Fourier spectra of the average
speed time dependences (figure 4(o), (p)).

When q(cong) becomes zero, because behind a road location the road is closed, the mega-
jam transforms into a queue of motionless vehicles, which therefore is not associated with
vehicular traffic. Nevertheless, there is a link between the queue and the mega-jam. If at a time
instant we allow several vehicles to escape from this queue, then simulations show that motion
of these vehicles results in wide moving jam occurrence, if the number of escaping vehicles
is chosen to be great enough: the downstream front of the jam separates moving vehicles
escaping from the queue and vehicles standing within the queue upstream of the front. When
the number of vehicles, which are allowed to escape from the initial queue of motionless
vehicles, decreases considerably, the downstream jam front transforms into a moving blank(s)
subsequently covered by vehicles standing in the queue. When a vehicle per a long enough
time interval is allowed to escape from the mega-jam, as simulations show, a sequence of such
moving blanks within this jam occur; these moving blanks exhibit, however, the dynamics
specifically associated with the mega-jam (section 5).

Thus based on a study of three-phase traffic flow model we found that the complexity
of traffic congestion at a heavy bottleneck caused for example by bad weather conditions
or accidents is associated with the phenomenon of random disappearance and appearance of
the pinch region over time as well as with the phenomenon of the merger of wide moving
jams into a mega-jam. When the bottleneck strength increases continuously, the mean length
of the pinch region decreases also continuously up to zero; at such a heavy bottleneck, the
pinch region does not exist any more. Beginning from a greater bottleneck strength only
the mega-jam survives in congested traffic upstream of the bottleneck and synchronized flow
remains only within its downstream front separating free flow and congested traffic. In other
words, in congested traffic occurring at such a very heavy bottleneck there are no continuous
flows within the congested pattern any more with the one exception of the downstream front
of synchronized flow that separates free flow downstream and the mega-jam upstream of
the front. Synchronized flow remains only within this front. These phenomena reveal the
evolution of the traffic phases in congested traffic when heavy bottlenecks occur in highway
traffic.

4. Microscopic spatiotemporal features of non-regular moving jam dynamics

4.1. Non-regular pinch region of general patterns

For GPs with a regular pinch region ((32) is not satisfied), we find known results that at a
small enough distance upstream of the bottleneck there is the pinch region of non-interrupted
synchronized flow (figure 6(a), (b)) with short enough time headways for which criterion (1)
is satisfied for none of the time headways (figure 6(c), (d)) [12]. To explain this conclusion,
we note that in accordance with [14] a moving jam exhibits the characteristic feature [J ] of a
wide moving jam (section 1), when in condition (1) Is > 5. For the model used in simulations
(section 2.1), τ (ac)

del ≈ 1.77 s. Consequently, we can suggest that condition (1) is satisfied when
τmax > 9 s. However, all time headways in figure 6(c), (d) are shorter than 6 s.

In contrast, under condition (32), when GPs with a non-regular pinch region occur, at
the same small distance upstream of the bottleneck some long-time headways appear in the
pinch region of the GP for which criterion (1) is satisfied (figure 6(g), (h)). This means that
there are wide moving jams that emerge almost directly upstream of the bottleneck. This is
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(a)
(b)

(c) (d)

(e) ( f )

(g) (h)

Figure 6. Simulated single-vehicle data for speed ((a), (b), (e), (f )) and time headway ((c), (d),
(g), (h)) measured by a virtual detector at location 15.8 km within congested traffic in the left
(figures left) and right lanes (right) related to different TB = 2.4 (a)–(d) and 6 s (e)–(h). For
(a)–(d) and (e)–(h) q(cong) = 1114 and 626 vehicles/h/lane, respectively.

related to the previous result that the pinch region width L(pinch) of such a GP is nearly as small
as zero at some random time instants (figure 5(e), (g)). During other time intervals, there is
synchronized flow with short enough time headways for which criterion (1) is not satisfied
(figure 6(g), (h)). Thus at small enough distances upstream of the bottleneck such GPs consist
of a random alternation between synchronized flow and wide moving jams. This is related to
the conclusion of section 3 that for these GPs at some random time instants the pinch region
disappears and appears again.

4.2. Moving blanks within wide moving jams

Single-vehicle data measured by a virtual road detector 6 km upstream of the bottleneck within
the GPs with regular (figure 7(a)–(d)) and non-regular pinch regions (figure 7(e)–(h)) exhibits
qualitatively the same and typical time dependences of the speed and time headway for a
sequence of wide moving jams of a GP [14]. We see that there are moving jams within which
the maximum time headway τmax between two vehicles within the jams is very long, i.e., traffic
flow is interrupted and criterion (1) is satisfied (figure 7(c), (d), (g), (h)). Therefore, these jams
are wide moving ones. There are time intervals between these jams within which the speed is
high (figure 7(a), (b), (e), (f )) and vehicle time headways are small (figure 7(c), (d), (g), (h)).
These regions between the wide moving jams are related to non-interrupted traffic flow. Thus
at some distance upstream of the bottleneck there is a sequence of wide moving jams that is
characteristic for GPs.
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(a) (b)

(c)
(d)

(e) ( f )

(g) (h)

Figure 7. Simulated single-vehicle data for speed ((a), (b), (e), (f )) and time headway ((c), (d),
(g), (h)) measured by a virtual detector at location 10 km within congested traffic in the left (figures
left) and right lanes (right) related to different TB = 2.4 (a)–(d) and 6 s (e)–(h).

(a) (b)

(c)
(d)

. . .

. . .

. . .

. . .

Figure 8. Simulated single-vehicle data for speed ((a), (b)) and time headway ((c), (d)) measured
by a virtual detector at location 10 km within a wide moving jam in the left (figures left) and right
lanes (right) related to TB = 2.4 s.

In general, a wide moving jam consists of alternations of flow interruption intervals
and moving blanks within the jam. When a wide moving jam propagates upstream through
a virtual detector on the road, the speed decreases sharply within the upstream jam front
(figure 8(a), (b)). Then a flow interruption interval, i.e., a long-time headway that satisfies
criterion (1) is usually measured (figure 8(c), (d)).
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In the simplest case, the microscopic structure of a wide moving jam consists solely of this
flow interruption interval only (τmax ≈ 78.8 and 84.8 s in the left and right lanes, respectively
in figure 8(c), (d)). In this case, after the flow interruption interval the speed increases sharply
within the downstream front of the jam associated with vehicles accelerating at this jam front
(figure 8(a), (b)). There are no moving blanks within this jam.

In a more general case, for a wide moving jam we observe two or more flow interruption
intervals, i.e., two or more long-time headways τ (i), i = 1, 2, . . . each of them satisfies
criterion (1), i.e.4,

I (i)
s = τ (i)

τ
(ac)
del

� 1, i = 1, 2, . . . . (38)

Between these flow interruption intervals, we find one or more vehicles that have passed the
detector with speeds, which are considerably lower than the average speed both upstream
and downstream of the wide moving jam. This low-speed vehicle motion is associated with
moving blanks: the flow interruption intervals τ (i), i = 1, 2, . . . are separated by one or more
moving blanks within the wide moving jam.

A case, when after the first flow interruption interval only one vehicle has passed the
detector location before the second flow interruption interval begins, is shown in figure 9(a)–
(d). Here, only one moving blank propagates in the left lane and one moving blank propagates
in the right lane, i.e., only two vehicles pass the detector during the jam propagation through
the detector. The moving blanks occur at different time instants (91.28 min and 90.92 min
in the left and right lanes, respectively) separating two different flow interruption intervals
τ (1) ≈ 46.2 and τ (2) ≈ 16.4 s in the left lane and τ (1) ≈ 27.4 and τ (2) ≈ 37.3 s in the right
lane.

In another case shown in figure 9(e)–(h), there is one moving blank only in the right
lane whereas no moving blanks propagate through the detector in the left lane. There are
many other cases with arbitrary variety of moving blanks in different lanes. For example,
in a case shown in figure 9(i)–(l), as in the former case there are no moving blanks in the
left lane, however, in the right lane there are two separated flow interruption intervals with
τ (1) ≈ 46.2 and τ (2) ≈ 19.9 s separated by a region of four moving blanks following each
other.

In all cases discussed above for GPs, respectively, with regular (figure 9(a)–(d)) and non-
regular pinch regions (figure 9(e)–(l)), we can clear distinguish low-speed vehicle motions
associated with moving blanks within the jams and non-interrupted flows between the jams.
This is because of two features of wide moving jams: (i) the moving blanks are between flow
interruption intervals satisfying criterion (38) within the jams; (ii) the speed within vehicle
motion associated with moving blanks is v � 10 km h−1, i.e., this speed is considerably lower
than the average speed within flows between the jams.

4.3. Complex spatiotemporal dynamics of flow interruption intervals and moving blanks

At low scales in time and space, both GPs with a regular (figure 10(a), (b)) and non-regular
pinch regions (figure 10(c), (d)) exhibit spatiotemporal microscopic structures in which regions
of lower speed alternate with regions of higher speed; in both cases, we find that these regions
propagate upstream. At the first glance, we can see only that the mean frequency of low-speed
regions increases with the increase in TB, i.e., when the bottleneck strength increases; this
result has already been mentioned in section 3. However, if we consider the microscopic
structures of GPs with a non-regular pinch region in larger scales in space and time (figures 11

4 As mentioned above, we suggest that condition (38) is satisfied when τ (i) > 9 s.
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Figure 9. Simulated single-vehicle data for speed ((a), (b), (e), (f ), (i), (j)) and time headway
((c), (d), (g), (h), (k), (l)) measured by a virtual detector at location 5 km within wide moving jams
in the left (figures left) and right lanes (right) related to TB = 2.4 (a)–(d), 6 (e)–(h) and 12 s (i)–(l).

and 12), we can see that there is a crucial qualitative difference between them and the
microscopic structures of GPs with a regular pinch region (figure 10(a), (b)).

GPs with a regular pinch region exhibits a well-known regular dynamics of wide moving
jams when the jams propagate upstream of the pinch region on a homogeneous road
(figure 10(a), (b)): some of the wide moving jams can dissolve during their upstream
propagation (a so-called jam suppression effect) [12]. An example of the effect of the
dissolution of wide moving jams can be seen in figure 10(b) (labeled ‘jam dissolution’).

However, under condition (32), i.e., when a GP with a non-regular pinch region is realized,
wide moving jams of the GP can exhibit complex and non-regular spatiotemporal dynamic
behavior (figures 11 and 12). This non-regular jam dynamics is associated with the following
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(a)

(b)

(c)

(d)

Figure 10. Simulated spatiotemporal microscopic structures of GPs with regular ((a), (b)) and
non-regular pinch regions ((c), (d)): single-vehicle speeds within GPs presented in space and time
by regions with variable darkness (the lower the speed, the darker the region) in the left (figures
left) and right (right) road lanes associated with speed distributions at different TB = 1.8 (a),
2.4 (b), 4 (c), 12 s (d). For (c) q(cong) = 776 vehicles/h/lane. The upstream boundary of the
bottleneck region is at location x = 16 km (labeled ‘bottleneck’).

effects:

(1) The effect of the splitting of a flow interruption interval onto two (or more) flow
interruption intervals (figures 11(a) and 12(c)).

(2) The effect of the emergence of a new flow interruption interval (figures 11(a) and 12(d)).
(3) The effect of the merging of two (or more) traffic flow interruption intervals (figures 11(a)

and 12(a)).
(4) The effect of the dissolution of two (or more) traffic flow interruption intervals

(figures 11(b), (c) and 12).

The dynamic effects (1)–(4) occur spontaneously during upstream propagation of wide
moving jams. In different lanes, these effects occur often independently of each other
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(a)

(b)

(c)

Figure 11. Fragments of figure 10(d) in larger scales in time and space in the left (figures left) and
right lanes (right). White regions (single-vehicle speeds are equal to or higher than 5.4 km h−1)
are related to synchronized flows and moving blanks. Black regions (single-vehicle speeds are
equal to zero) are related to flow interruption intervals. TB = 12 s.

and at different road locations. A spatiotemporal competition of these effects as well as a
diverse variety of the initiating and resulting dynamic effects determine a non-regular dynamic
behavior of wide moving jams. The variety of the initiating and resulting effects associated
with the effects (1)–(4) is as follows:

(i) The splitting of a flow interruption interval within a wide moving jam can result from the
emergence of a new region of moving blanks within the jam.

(ii) The splitting of a flow interruption interval within an initial wide moving jam can result
in the splitting of the jam onto two (or more) wide moving jams; in the latter case,
synchronized flow(s) (or free flow(s)) occurs that separates the emergent wide moving
jams. This is related to an J → S (or J → F) transition(s) occurring within the initial jam.

(iii) The effect of the emergence of a new flow interruption interval within a wide moving jam
can result from the splitting of a region of moving blanks onto two (or more) regions of
moving blanks separated by the emergent flow interruption interval.
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(a)

(b)

(c)

(d)

Figure 12. Simulated single-vehicle speeds within GPs presented in space and time by regions
with variable darkness (the lower the speed, the darker the region) in the left (figures left) and
right lanes (right). White regions (single-vehicle speeds higher than 3.6 km h−1) are related to
synchronized flows and moving blanks. Black regions (single-vehicle speeds are equal to zero)
are related to flow interruption intervals. TB = 30 s. q(cong) = 218 vehicles/h/lane.

(iv) The effect of the emergence of a new flow interruption interval occurring within
synchronized flow between two wide moving jams can result in the emergence of a
new wide moving jam. This is related to an S → J transition occurring in metastable
synchronized flow between the jams.

(v) The effect of the merging of two (or more) traffic flow interruption intervals can result
from the dissolution of two (or more) regions of moving blanks within a wide moving
jam without wide moving jam dissolution.

(vi) The effect of the merging of two (or more) traffic flow interruption intervals can result in
the merging of two (or more) wide moving jams.
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(vii) The effect of the dissolution of a traffic flow interruption interval within a wide moving
jam can result from the merging of two (or more) regions of moving blanks within the
jam.

(viii) The effect of the dissolution of a traffic flow interruption interval can result in the
dissolution of a wide moving jam.

The initiating and resulting effects (v)–(viii) decrease the mean frequency of regions of
flow interruption intervals and regions of moving blanks within wide moving jams as well as
the mean frequency of wide moving jams of a GP. In particular, the effects (vii) and (viii) occur
very frequently close to the upstream boundary of the pinch region of GPs (see road locations
between 16 km and 15 km in figures 11(a), (c) and 12(a), (b)). This leads to a decrease in the
mean frequency of wide moving jams, when the jams propagate upstream.

There can be diverse sequences of the effects (1)–(4) over time with a random and
arbitrarily sequence of the effects (i)–(viii). For example, the splitting of a flow interruption
interval onto two intervals can be followed by the subsequent dissolution of these two intervals
(figures 11(c) and 12(b)); the splitting of a flow interruption interval onto two intervals can
be followed by the subsequent merging of these two intervals (figure 12(c)). The random
and arbitrarily spatiotemporal sequence of the effects discussed can explain the non-regular
spatiotemporal jam dynamics found in GPs with a non-regular pinch region. In turn, this
non-regular spatiotemporal jam behavior can also explain the result of section 3 that we
cannot distinguish a sequence of wide moving jams in 1 min average data (figure 4(i)–(l)):
the microscopic non-regular jam dynamics is averaged in this 1 min average data leading to
non-regular and non-homogeneous speed distributions in which this real fine spatiotemporal
jam dynamics cannot be found.

The complexity of the non-regular jam dynamics depends on the distance upstream of the
bottleneck (figure 13). The greater this distance, the wider the mean jam width, the smaller
the mean distance between wide moving jams and the smaller the mean frequencies of the
effects (ii), (iv), (vi) and (viii), which are in the most degree responsible for the non-regular
jam dynamics. This means that the complexity of the jam dynamics becomes the weaker, the
more the distance upstream of the bottleneck. In addition, with the increase in the distance
upstream of the bottleneck the mean frequency of the jams decreases. However, this decrease
is limited by a limit jam frequency about 0.5 min−1 far enough of the bottleneck. This
limit jam frequency is also related to other GPs at a great enough bottleneck strength under
condition (32).

5. The microscopic spatiotemporal structure of a mega-jam

The crucial difference between GPs and a mega-jam, which occurs under condition (34), is as
follows: far enough upstream of the bottleneck, single-vehicle data of a GP shows a sequence
of wide moving jams separated by non-interrupted flows (figure 7); in contrast, within the
mega-jam we can distinguish no sequence of wide moving jams (figure 14(a)–(d)). Rather
than a sequence of wide moving jams, within the mega-jam there is a complex sequence of
upstream moving flow interruption intervals (black regions in figure 15) for which criterion
(38) is satisfied (figure 14(c), (d)). These flow interruption intervals are separated by short
time intervals within which vehicles move with low speeds (figure 14(c), (d)). The latter time
intervals are associated with moving blanks (white regions in figure 15).

Thus as the microscopic spatiotemporal structure of a wide moving jam, the microscopic
structure of a mega-jam consists of an alternation of flow interruption intervals and moving
blanks. This explain the term mega-wide moving jam (mega-jam) that is also a wide moving
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(a)

(b)

(c)

Figure 13. Simulations of dependence of non-regular jam dynamics on distance from bottleneck
in the left (figures left) and right lanes (right). White regions (single-vehicle speeds higher than
5.4 km h−1) are related to synchronized flows and moving blanks. Black regions (single-vehicle
speeds are equal to zero) are related to flow interruption intervals. TB = 12 s.

jam, however, with an extremely great width continuously growing over time. The continuous
growth of the mega-jam width occurs as long as the flow rate upstream of the mega-jam
qin exceeds q(cong) (figure 2(d)). As for GPs with a non-regular pinch region, within the
mega-jam we found a very complex and non-regular spatiotemporal dynamics of flow
interruption intervals and moving blanks. Because within the mega-jam there are no wide
moving jams separated by non-interrupted flows, the non-regular mega-jam dynamics is
associated with the dynamic effects (i), (iii), (v) and (vii) of section 4.3 only. When
the bottleneck strength increases further, the microscopic spatiotemporal structure of traffic
congestion does not qualitatively change any more (figure 16). However, time intervals within
which moving blanks occur become shorter.

As the complexity of the non-regular jam dynamics (section 4.3), the complexity of the
non-regular mega-jam dynamics depends also on the distance upstream of the bottleneck
(figures 15 and 16). The greater this distance, the wider the mean width of flow interruption
intervals and the smaller the mean frequencies of the dynamic effects (i), (iii), (v) and (vii) that
are responsible for the non-regular mega-jam dynamics. This means that the complexity of the
mega-jam dynamics becomes the weaker, the more the distance upstream of the bottleneck.

At a small distance upstream of the bottleneck, single-vehicle data for a GP for which the
pinch region dissolves fully (figure 17(a)–(d)) and for a mega-jam (figure 17(e)–(h)) exhibit
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(a) (b)

(c)

(d)

(e) ( f )

(g) (h)

(i)

Figure 14. Simulated single-vehicle data for speed ((a), (b), (e), (f )) and time headway ((c),
(d), (g), (h)) measured by a virtual detector at location x = 5 km related to TB = 60 (a)–(d) and
30 s (e)–(h), as well as single-vehicle speed data within GP for TB = 30 s presented in space
and time by regions with variable darkness (the lower the speed, the darker the region). In (i),
white regions (single-vehicle speeds higher than 3.6 km h−1) are related to synchronized flows
and moving blanks and black regions (single-vehicle speeds are equal to zero) are related to flow
interruption intervals. Left and right figures are related to the left and right lanes, respectively. The
upstream boundary of the bottleneck is at location x = 16 km.

qualitatively the same features: in both cases congested traffic consists of an alternation of
flow interruption intervals, for which condition (38) is satisfied, and moving blanks.

It should be noted that in contrast with GPs related to TB � 12 s (figures 7 and 9), the
difference between a GP for which the pinch region dissolves fully, which is associated with
conditions T

(th)
B � TB < T

(mega)
B that results in

q
(cong)

th � q(cong) > q(cong)
mega , (39)

and a mega-jam associated with condition (34) cannot also be clearly seen upstream of the
bottleneck: it is not easy to distinguish wide moving jams separated by non-interrupted
flows for this GP (figure 14(e)–(i)). This is because under condition (39) for the model
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(a)

(b)

(c)

(d)

Figure 15. Fragments of figure 10(d) in larger scales in the left (figures left) and right lanes (right).
White regions (single-vehicle speeds higher than 1.8 km h−1) are related to moving blanks. Black
regions (single-vehicle speeds are equal to zero) are related to flow interruption intervals. TB =
60 s. The upstream boundary of the bottleneck is at location x = 16 km.

of identical vehicles used in simulations (section 2.1) the difference between the flow rates
q(blanks) and q(cong) is very small. For example, for the GP at TB = 30 s, the flow rate q(cong) =
218 vehicles/h/lane, whereas q(blanks) ≈ 130 vehicles/h/lane. In addition, for this GP the
average speed between wide moving jams that is about 15 km h−1 (figure 14(e), (f )) is not
considerably higher than the speed associated with moving blanks. For these reasons, we
can distinguish only a few separated wide moving jams within this GP far enough upstream
of the bottleneck (for example, the jams labeled ‘jam 1’ and ‘jam 2’ in figure 14(e)–(i) can
be considered as separated ones because flow rates between the jams are greater than 800
vehicles/h/lane, i.e., they exceed q(blanks) considerably). Thus under condition (39) GPs
exhibit intermediate features between the features of mega-jams and the features of GPs with
non-regular sequences of wide moving jams found in section 4.3.
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(a)

(b)

(c)

(d)

Figure 16. Simulated single-vehicle speed data within mega-jam presented in space and time
by regions with variable darkness (the lower the speed, the darker the region). White regions
(single-vehicle speeds higher than 1.8 km h−1) are related to moving blanks and black regions
(single-vehicle speeds are equal to zero) are related to flow interruption intervals. Left and right
figures are related to the left and right lanes, respectively. TB = 90 s. q(cong) = 95 vehicles/h/lane.
The upstream boundary of the bottleneck is at location x = 16 km.

6. Discussion

6.1. Random jam nucleation in metastable synchronized flow resulting in non-regular
spatiotemporal dynamics of moving jams

For explanations of the results of the paper, we should recall some features of an S → J
transition, which is a first-order phase transition (figure 18) [12, 35]. We consider a wide
moving jam consisting of a flow interruption interval only; we suggest that the vehicle density
within the jam ρmax = 1/d, where d is the vehicle length (section 2.1). Flow states directly
downstream the jam are related on average to the line J whose slope is equal to the mean
velocity vg of the downstream front of the jam. If a flow state directly upstream of the jam
is associated with a point in the flow-density plane that is below the line J (point labeled
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(a) (b)

(c)
(d)

(e) ( f )

(g) (h)

Figure 17. Simulated single-vehicle data for speed ((a), (b), (e), (f )) and time headway ((c),
(d), (g), (h)) measured by a virtual detector at location x = 15.8 km, i.e., 200 m upstream of
the upstream boundary of the bottleneck in the left (figures left) and right lanes (right) related to
TB = 30 (a)–(d) and 60 s (e)–(h).

Figure 18. Qualitative explanation of features of moving jam emergence [35]: free flow (F),
steady states of synchronized flow (2D dashed region) and the line J in the flow density plane. A
dashed line is related to a given low synchronized flow speed.

‘stable’ in figure 18), then the absolute value of the velocity of the upstream front of this jam∣∣v(up)
g

∣∣ < |vg| (the velocity
∣∣v(up)

g

∣∣ is associated with the slope of a line in the flow-density
plane from the point ‘stable’ to the point (0, ρmax) related to the jam). This means that the
jam width, i.e., the duration of the flow interruption interval decreases over time. In contrast,
if a flow state directly upstream of the jam is associated with a point in the flow-density plane
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that is above the line J (point labeled ‘metastable’ in figure 18), then the absolute value of the
velocity of the upstream front of this jam

∣∣v(up)
g

∣∣ > |vg|, i.e., the jam width, i.e., the duration
of the flow interruption interval increases over time. This can explain why all synchronized
flow states below the line J are stable, whereas all synchronized flow states on and above the
line J are metastable with respect to wide moving jam emergence (S → J transition) [35].

As shown in [12, 16], the random moving jam emergence in metastable synchronized flow,
which is qualitatively discussed above, is simulated in the stochastic traffic flow model through
a competition between the speed adaptation and over-deceleration effects (items (iii) and (vi)
of section 2.1). In particular, simulations show that in metastable synchronized flow (states
on and above the line J in figures 1(b) and 18), a wide moving jam emerges spontaneously,
if a speed disturbance occurs within which the speed is equal to or lower than a critical speed
required for an S → J transition; otherwise the disturbance decays and no an S → J transition
occurs (see related simulation results in section 6.5). Thus a speed disturbance with the critical
speed can be considered a nucleus for an S → J transition; the nucleus for an S → J transition
that subsequently grows propagating upstream has been called a growing narrow moving jam.
At a given distant of different synchronized flow points associated with various speeds from
the line J in the flow-density plane, the smaller the speed, the smaller the nucleus required for
an S → J transition.

As usual for first-order phase transitions, simulations show also that an S → J transition
is characterized by a random time delay TSJ [16, 29]. TSJ includes a random time delay of
spontaneous nucleation of a narrow moving jam and a random time of the jam growth within
the pinch region until the jam transforms into a wide moving jam at the upstream boundary
of the pinch region. Thus the smaller TSJ, the shorter L(pinch). The random character of TSJ

explains a time dependence of L(pinch)(t) (figure 5(c), (e), (g)). We found that the greater the
bottleneck strength, i.e., the smaller the average flow rate q(cong) in congested traffic, the lower
the speed and the greater the density within the pinch region. However, as mentioned above,
the lower the speed and the greater the density in synchronized flow, the smaller the nucleus
required for the emergence of a flow interruption interval, i.e., the smaller the mean random
time delay T

(mean)
SJ .

Thus the smaller the flow rate q(cong), the greater the probability for the occurrence of a
negligibly small TSJ, i.e., the greater the probability for the emergence of wide moving jams
directly upstream of the bottleneck; in the latter case L(pinch) = 0. This explains why under
condition (32) the regular structure of the GP breaks due to the random disappearance of the
pinch region during some time intervals. This explains also why L

(pinch)
mean decreases up to zero,

when a strong decrease in q(cong) causes a decrease in T
(mean)

SJ up to zero, i.e., when under
condition (33) the pinch region does not exist.

The above physics of wide moving jam (flow interruption interval) emergence in
synchronized flow incorporated in the model of section 2.1 explains also complex dynamics
of wide moving jams found under condition (32). Upstream of the pinch region, synchronized
flows between flow interruption intervals are related on average to points on the line J in the
flow-density plane. However, there are random disturbances in these flows; some of them
decrease the speed and increase the density (i.e., time headways decrease), other disturbances
decrease the density (i.e., time headways increase). As explained above, a speed disturbance,
which decreases the speed, can lead to the emergence of a flow interruption interval, i.e., the
jam emergence, when the speed becomes lower than the critical one (this case is associated
with points above the line J in figure 18). In contrast, a disturbance, which decreases the
density, can lead to flow interruption dissolution, when an initial flow interruption interval is
short enough (this case is associated with points below the line J in figure 18). As mentioned

27



J. Phys. A: Math. Theor. 41 (2008) 215101 B S Kerner

above, the smaller the synchronized flow speed between the jams, the smaller the nucleus
required for the emergence of a flow interruption interval in this flow. At smaller bottleneck
strengths, the average speed in synchronized flow between flow interruption intervals is high
and the density is relatively small, and therefore, the probability of the emergence of flow
interruption intervals is small.

In contrast, at greater bottleneck strengths, i.e., at smaller flow rates q(cong), the
synchronized flow speed between wide moving jams is low (compare synchronized flow
speeds between the jams in figures 7 and 9 for TB = 2.4, 6 and 12 s) and the density is great;
therefore, the probability of the emergence of flow interruption intervals between the jams,
i.e., the emergence of new wide moving jams, increases rapidly with the bottleneck strength.
As a result, many short flow interruption intervals appear at smaller flow rates q(cong); in turn,
other random disturbances, which cause a density decrease upstream of these emergent flow
interruption intervals, lead with a great probability to the dissolution of the flow interruption
intervals. A spatiotemporal competition between the random emergence and dissolution
of flow interruption intervals can explain the non-regular spatiotemporal jam dynamics of
section 4.3.

There are several sources for random speed disturbances in the model of section 2.1,
whose growth leads to the emergence of flow interruption intervals in synchronized flows:
lane changing, the variety of the random delays in vehicle acceleration and decelerations. In
addition, within the bottleneck vehicles are forced to move at much longer safe time headways
τ (safe) = TB than away of the bottleneck τ (safe) = 1 s (section 2.2). For this reason, the
mean amplitude of speed disturbances in the pinch region is considerably greater than that
in synchronized flows between the jams on a homogeneous road. This explains why the
non-regular jam dynamics is considerably visible only at greater bottleneck strengths than the
critical bottleneck strength for the occurrence of GPs with a non-regular pinch region.

The above physics of the non-regular jam dynamics found in simulations of the stochastic
traffic flow model of section 2.1 can also explain why at a given bottleneck strength the
complexity of this jam dynamics becomes the weaker, the more the distance upstream of the
bottleneck (figure 13): far enough upstream of the bottleneck, durations of the flows between
wide moving jams become short and therefore the probability for speed fluctuations, which are
great enough for the emergence of flow interruption intervals within these flows, decreases.

6.2. Physics of mega-jam

When the bottleneck strength increases strongly and condition (6), i.e., (34) is satisfied, as
explained in the introduction and found in numerical simulations (section 5), wide moving
jams merge into a mega-jam. The whole flow rate within any mega-jam is supplied by moving
blanks only. As a result, under condition (6) we get

q(cong) = q(blanks)
mega , (40)

where q(blanks)
mega denotes the average flow rate associated with moving blanks within the mega-

jam, which satisfies the condition

q(blanks)
mega � q(blanks), (41)

where q(blanks) is defined via formula (4), i.e., this is the average flow rate associated with
moving blanks within wide moving jams separated by non-interrupted flows. The equality
in (41) is related to (5). Thus if under condition (6) the bottleneck strength increases and
therefore q(cong) decreases, then in accordance with (40), the flow rate q(blanks)

mega decreases. This
explains shorter regions of moving blanks in figure 16 in comparison with those in figure 15.
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As mentioned in section 3 (see (36)), the threshold bottleneck strength for the pinch
region existence is smaller than the critical bottleneck strength for the mega-jam formation.
To explain that this result has a general character, let us assume that the bottleneck
strength is initially greater than the critical one for the mega-jam formation. In this case,
q(cong) = q(blanks)

mega < q(blanks). If now the bottleneck strength decreases gradually, then the
flow rate q(cong) increases. The flow rate q(cong) can be supplied by moving blanks only
up to the critical bottleneck strength satisfying condition (5), i.e., q(cong) = q(blanks). When
the bottleneck strength decreases further and becomes smaller than the critical one for the
mega-jam formation, then q(cong) > q(blanks). The difference �qblanks = q(cong) − q(blanks)

should be supplied by vehicles accelerating from wide moving jams; this means that
wide moving jams separated by synchronized flows must appear in congested traffic. In
particular, such synchronized flows appear just upstream of the bottleneck as a result of the
upstream propagation of wide moving jams that emerge directly upstream of the bottleneck.
Nevertheless, a pinch region of the synchronized flow at the bottleneck does not still appear as
long as the difference �qblanks is small enough. Indeed, the pinch region appears only, when
at least one of the wide moving jams occurs at a finite distance upstream of the bottleneck in
the synchronized flow due to a growing narrow moving jam that emerges initially in this flow.
This is possible only, if the former wide moving jam due to its upstream propagation is at a
great enough distance from the bottleneck. The latter can be realized, when the difference
�qblanks exceeds also some finite value, i.e., the threshold bottleneck strength for the pinch
region existence should be always smaller than the critical one for the mega-jam formation.
Thus condition (36) is a general result for any heavy bottleneck.

Simulations allow us to assume that moving blanks can be considered speed fluctuations
within the wide moving jam phase. Consequently, the non-regular dynamics effects (i),
(iii), (v) and (vii) of section 4.3 can be explained by great amplitude of speed fluctuations
associated with moving blanks occurring during their upstream propagation. This assumption
is confirmed by empirical observations of very broad distributions of vehicles time headways
associated with moving blanks [14]. Moreover, a random time delay in vehicle acceleration
from a vehicle standstill within a flow interruption interval can cause fluctuations in the velocity
of the downstream front of the flow interruption interval.

6.3. Comparison with empirical results

To compare the above theory of traffic congestion with empirical congested patterns, one
should have measured data for traffic congestion at a bottleneck, whose strength should be
manually continuously changeable from the one associated with usual bottlenecks like on- and
off-ramps to great bottleneck strengths associated with heavy bottlenecks caused, e.g., by bad
weather conditions or accidents, specifically when condition (2) is not valid. Unfortunately,
such measured data are not available. However, we can compare the theory with 1 min
average data measured at several road locations within congested patterns related to two
limiting cases: (i) traffic congestion at a usual on-ramp bottleneck and (ii) traffic congestion
at a heavy bottleneck.

Speed distributions within congested patterns found in simulations (figures 2(a), (b)
and 19) for the range of TB = 1.6 − 2.4 s associated with the flow rate range

q(cong) = q(pinch) = 1113–1800 vehicles/h/lane (42)

are qualitatively the same as those in an empirical GP shown in figure 20(a), (b) and in all other
known empirical GPs [12]. Moreover, quantitative values of empirical flow rates q(pinch) (2)
are approximately associated with the theoretical result (42). Empirical speed autocorrelation
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Figure 19. Simulation results for speed (left) and flow rate (right) associated with locations within
the pinch region (x = 15 km) and the sequence of wide moving jams (x = 10 km) of the GP
shown in figure 2(a). The upstream boundary of the bottleneck is at x = 16 km. 1 min average
data.

functions and associated Fourier spectra of speed time dependencies show regular character
of wide moving jam propagation (figure 20(c), (d)) as those found in simulations of GP at
shorter TB (figure 4(c), (d)).

In contrast, for TB > 6 s associated with the average flow rate q(cong) < 625
vehicles/h/lane simulated congested patterns at heavy bottlenecks (figure 2(c), (d)) are
qualitatively the same as those we found in empirical data measured on many various days (and
years) on different freeways, when very heavy bottlenecks caused by bad weather conditions
or accidents occur for which empirical flow rates

q(cong) � 600 vehicles/h/lane. (43)

In this case, rather than regular structure of traffic congestion of GPs (figures 2(a), (b), 19,
and 20), both theoretical (figures 2(c), (d), 4(i) and 21) and empirical traffic congested patterns
(figure 22) exhibit non-regular spatiotemporal structure of congestion in which no sequences
of wide moving jams can be distinguished in 1 min average data.

An example of such an empirical congested traffic pattern is shown in figure 22. Rather
than the regular structure of congestion within the GP (figure 20), in measured data associated
with bad weather conditions a non-regular spatiotemporal structure of congestion is observed
(figure 22). A heavy bottleneck appears on February 02, 2006 between locations 4.07 and
3.02 km due to snow and ice. Upstream of the bottleneck, very low speed and flow rate
patterns (x � 3.02 km in figure 22(b)) are observed. Downstream of the bottleneck (x =
4.07 km) vehicles have escaped from the congestion (speed is high); however, the flow rate
is very small because the bottleneck reduced the average flow rate within the congestion
strongly. For example, at x = 3.02 km, the flow rate q(cong) averaged between 7:00 and 7:40
and across the road is 513 vehicles/h/lane. In contrast with the GP in figure 20(b) (as with
other empirical GPs [12]), within traffic congestion shown in figure 22 non-regular low-speed
patterns are observed in which no sequence of wide moving jams can be distinguished (x �
3.02 km). This conclusion is regardless of the flow rates to on- and off-ramps, which in the
data set lead to an increase in q(cong) at x = 1.77 km in comparison with q(cong) at x = 0 km
(figure 22(a), (b)). If speeds in different lanes are compared (figure 22(c)), we find even more
non-regular speed time dependencies: whereas no vehicles pass a detector in one of the lanes,
i.e., the speed is zero, during the same time interval the average speed in other lanes can be
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(a)

(b)

(c) (d)
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Figure 20. Usual empirical traffic congestion—a general pattern (GP) at on-ramp bottleneck.
(a) Measured speed in space and time for the GP. (b) Measured speed (left) and flow rate (right)
associated with (a) in different lanes at different road locations associated with free flow downstream
of the bottleneck (x = 7.9 km), pinch region of synchronized flow upstream of the bottleneck
(x = 5.2 km), and within a sequence of wide moving jams at x = 0 km. ((c), (d)) Empirical speed
correlations (c) and associated Fourier spectra (d) for speed in the left lane within the sequence of
wide moving jams at x = 0 km. q(pinch) ≈ 1200 vehicles/h/lane. 1 min average data measured
on the freeway A5-South in Germany on April 15, 1996. Arrangement of detectors is shown in
figure 2.1 of the book [12].

higher than zero. This explains why in time dependences of speeds averaged across the road
(figure 22(b)), this very low speed is seldom equal to exactly zero.

As congested traffic in measured data (figure 22(b), (c)), simulated congested traffic at
a heavy bottleneck is also non-homogeneous in space and time (figures 4(i), (j) and 21).
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Figure 21. Simulation results for speed (left) and flow rate (right) averaged across the road at
different road locations within the congested pattern shown in figure 2(c). The upstream boundary
of the bottleneck is at x = 16 km. TB = 12 s. 1 min average data.

In the measured and simulated data, as follows from Fourier spectra of speed time
dependencies, these non-homogeneous congested patterns exhibit non-regular spatiotemporal
behavior (figures 22(d) and 4(l)). This is in contrast with the regular structure of traffic
congestion within the GP (figures 20 and 19).

As in measured data (figure 22(b), (c)), in 1 min average data related to traffic congestion
in simulations very low speed and flow rate patterns are realized upstream of the bottleneck
in which no sequence of wide moving jams can be distinguished (figure 21); downstream
of the bottleneck (x > 16.3 km) vehicles have escaped from the congestion (speed is high)
(figure 2(c)), however, the flow rate is very small because the bottleneck reduced the average
flow rate within the congestion strongly.

A summary of the above comparison of theory of traffic congestion with the measured
data is as follows:

(i) Spatiotemporal distributions of the 1 min average speed and flow rate within GPs occurring
at usual bottlenecks are qualitatively the same in the above theory (figure 19) and
measured data (figure 20(a), (b)): in both simulated and measured data, GPs consist
of the pinch region and wide moving jams upstream. Measured and simulated speed
autocorrelation functions and associated Fourier spectra of speed time dependencies show
regular character of wide moving jam propagation (figures 4(c), (d) and 20(c), (d)).

(ii) In contrast with item (i), in 1 min average data related to simulated congested patterns
(figure 21) and to measured data (figure 22(b), (c)) for traffic congestion at heavy
bottlenecks no sequence of wide moving jams can be distinguished. In simulations
(figure 21) and measured data (figure 22(b), (c)), spatiotemporal distributions of the
average speed and flow rate in these congested patterns are non-homogeneous in space
and time. Fourier spectra of the associated non-homogeneous time dependencies of the
speed show non-regular character of traffic congestion at the heavy bottlenecks both in
simulations (figure 4(l)) and measured data (figure 22(d)).
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Figure 22. Empirical structure of congestion caused by snow and ice. (a) Scheme of road detector
arrangement on a section of the freeway A3-North in Germany near the intersection ‘Hanau’.
(b) Average speed and flow rate across the freeway at different locations. (c) Speed in different
lanes at two locations. (d) Fourier spectra of time dependences of the speed in the left lane at two
locations. 1 min average data.

As follows from sections 4.3 and 5, the non-regular pattern behavior of item (ii) can be
explained by two different reasons:

(1) The occurrence of a GP with the non-regular dynamics of wide moving jams.
(2) The occurrence of a mega-jam.

However, based on 1 min average data these two reasons of non-regular traffic congestion
cannot be distinguished from each other. Indeed, theoretical results of sections 4.3 and
5 allow us to suggest that at a very heavy bottleneck caused for example by bad weather
conditions or accidents there should be a very fine microscopic spatiotemporal structure of
traffic congestion associated with non-regular spatiotemporal dynamics of wide moving jams
or/and flow interruption intervals as well as moving blanks. However, this theoretical structure
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(a)

(b) (c)

Figure 23. Example of fundamental diagram of some traffic flow models (a) and simulations of
HCT (a) and OCT (b) at on-ramp bottleneck [7, 37, 41, 43].

of traffic congestion, even if it exists in real traffic, would be averaged in 1 min average
measured data, i.e., they could not be found in these data. Thus to make a more detailed
comparison of the presented theory with measured data, single-vehicle data measured within
traffic congestion at heavy bottlenecks is required. Unfortunately, currently these measured
single-vehicle data are not available. Such a comparison of the theory presented in the paper
with measured single-vehicle data is a separate and important task of further investigations
(see also section 6.5).

6.4. Critical discussion of homogeneous congested traffic

In some traffic flow models associated with the fundamental diagram approach to traffic
flow modeling, for example, Payne-like macroscopic models (e.g., [36, 37]), the Aw-Rascle
macroscopic model [38], optimal velocity (OV) models (e.g., [39, 40]), the intelligent driving
model (IDM) [7, 43] as well as some other traffic flow models (see references in [7]), the
density region at the fundamental diagram, within which traffic flow is unstable, is limited
at greater densities, i.e., flow states at the fundamental diagram are unstable only within the
density range (dashed part of the fundamental diagram in figure 23(a)),

ρ(J)
cr < ρ < ρ(HCT)

cr . (44)

In other words, within the density range

ρ(HCT)
cr < ρ � ρmax (45)

homogeneous model states of congested traffic related to very small flow rates q(cong) are
stable with respect to small amplitude fluctuations. These model states, in which the
speed and flow rate are homogeneous in space and time-independent, have been called in
[7, 41] as homogeneous congested traffic (HCT) (figure 23(b)). In these traffic flow models
[7, 37, 38, 40, 43], HCT can appear spontaneously upstream of a very heavy bottleneck, i.e.,
when the bottleneck strength is great enough. The more the bottleneck strength, the more the
density exceeds ρ(HCT)

cr and the more stable is HCT with respect to non-homogeneous speed
disturbances in these models [7, 37, 38, 40, 43]5.
5 It must be noted that HCT is not a general result of traffic flow models in the framework of the fundamental diagram
approach. No HCT appears regardless of the density, for example, in the NaSch CA model [30] or in the Krauß
model [33]: beginning from the critical density ρ

(J)
cr , all states of congested traffic at the fundamental diagram in these

models are also unstable up to the jam density ρmax.
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Figure 24. Measured unprocessed flow rate (squares) and speed (triangles) at two detector
locations within a congested pattern that has been presented in figure 10(a) of [42] as ‘homogeneous
congested traffic’ (HCT). The locations x = 469.9 km for the detector S4 and x = 470.7 km for
the detector S5 are chosen in accordance with the freeway section sketch shown in figure 6 of [42].
The raw data are 1 min averaged data.

In [42, 43] ‘empirical’ congested traffic states have been published, which should prove
the existence of HCT. Based on the measured data processed in [42], let us show that this
empirical proof is invalid.

In figure 10 of [42], spatiotemporal speed distributions within two congested patterns are
shown to be homogeneous during congested pattern existence. The average speed within the
associated patterns is very low, because these patterns have been caused by accidents. It must
be stressed that these results of [42] have been derived with an adaptive smoothing method
of data processing discussed in [42], i.e., with processed data sets. In contrast, our figure 24
shows real unprocessed raw measured data for one of these congested patterns related to
figure 10(a) of [42].

To explain real measured data shown in figure 24, we should note that already in raw
unprocessed data there is a large error in the average speed, when very low speeds are measured;
if speeds, v, of all vehicles that have passed a detector during a 1 min interval are within the
range 0 < v < 20 km h−1, then the road computer sets the average speed to 10 km h−1. Only
if no vehicle passes a detector during a 1 min interval the speed (and flow rate) is zero. This
explains why in the speed data shown in figure 24 there are mostly two speed values, zero and
10 km h−1. Only when average speeds are higher than 30 km h−1, the speed can be used in
deciding whether the speed distribution is really a homogeneous one or not6.

6 This is in contrast with our empirical example shown in figure 22 in which the road computer makes the arithmetical
averaging of single-vehicle speeds of vehicles passing a detector during each 1 minute interval. For this reason, in
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We see that for low speeds based on the data shown in figure 24, regardless of a method
of further speed data processing, no conclusion about features of a spatiotemporal pattern can
be made from an analysis of speeds only, as made in [42]. Rather than the average speed,
the flow rate is measured with a sufficient accuracy at any density. We can see from the flow
rate distribution shown in figure 24 that there are extremely complex spatiotemporal flow rate
changes both in space and time between 0 and 8 vehicles/min/lane. This explains that in
contrast with the statement of [42], the congested pattern is extremely non-homogeneous in
space and time. Features of such complex spatiotemporal congested patterns occurring at
heavy bottlenecks have been found in this paper.

Thus in reality the congested pattern shown in figure 10(a) of [42] has no relation
with HCT. The same critical conclusion can be made about the congested pattern shown in
figure 10(b) of [42], which should be another ‘empirical’ example of HCT.

Due to the existence of HCT model solutions, these traffic flow models exhibit also model
solutions called oscillatory congested traffic (OCT) (figure 23(c)) [7, 37, 40, 41, 43]. Indeed,
OCT appears in a neighborhood of the critical density ρ(HCT)

cr for instability of HCT: when the
density in HCT decreases and it approaches the critical density ρ(HCT)

cr , then due to instability
of HCT, OCT occurs. Thus OCT model solutions result from the existence of HCT model
solutions in these models, i.e., as HCT, OCT model solutions have no relation to real traffic
flow.

6.5. Hypothetical driver experiment on circle road associated with traffic congestion
conditions at heavy bottlenecks

Here we motivate a driver experiment on a homogeneous circle road without bottlenecks
whose results can be compared with some results of the theory of traffic congestion at heavy
bottlenecks presented in the paper.

Before we discuss such a hypothetical driver experiment on the circle road at traffic
congestion conditions as those occurring at heavy bottlenecks, we should consider simulations
of the pinch effect on a single-lane circle road of a length Lcircle, i.e., the spontaneous emergence
of wide moving jams in synchronized flow [16]. In an initial homogeneous synchronized flow
at a given speed, a local speed disturbance has been applied during a short time interval.
Within the disturbance, the decrease in speed is equal to �v. It has been found [16] that there
is a critical speed disturbance that amplitude is equal to �v(SJ)

cr (figure 25(a)). If �v � �v(SJ)
cr ,

then the disturbance grows over time leading to an S → J transition; this S → J transition
occurs only in metastable synchronized flow associated with synchronized flow states that lie
on or above the line J in the flow-density plane (figure 18). If in contrast, �v < �v(SJ)

cr , then
the disturbance decays over time. If the density of synchronized flow is great enough, then
�v(SJ)

cr → 0 (figure 25(a)).
This means that in such an initially homogeneous synchronized flow on a circle road

without bottlenecks pinch effect conditions are satisfied, which are qualitatively the same as
those in figure 2(a), (b) upstream of the bottleneck: already small speed (density) disturbances,
which occur spontaneously in synchronized flow due to model fluctuations, grow propagating
upstream with the subsequent spontaneous emergence of a wide moving jam [16, 44]
(figure 25(b), (c)). This result of three-phase traffic theory [12, 16, 35, 44] has recently
been confirmed in a driver experiment [45]. In this experiment, Nveh = 22 vehicles have
initially nearly homogeneously moved along a single-lane circle road with Lcircle = 230 m at
speed of about 30 km h−1. Over time, growing local speed (density) disturbances occurred in

figure 22 the speed can be used in deciding made in section 6.3 that the speed distribution is extremely non-
homogeneous in space and time.
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(a)

(b) (c)

Figure 25. Simulations of the emergence of wide moving jams in synchronized flow on circle road:
(a) �v

(SJ)
cr as a function of the density ρ = Nveh/Lcircle at initial synchronized flow speed 40 km h−1

(for a comparison, vfree = 108 km h−1), Lcircle = 20 km. ((b), (c)) Single-vehicle speed data (b)
and associated vehicle trajectories (for each tenth vehicle) (c) showing the spontaneous emergence
of wide moving jam in synchronized flow in space and time at Nveh = 48 vehicles, Lcircle = 1 km;
vehicles start to move from a vehicle standstill at t = 0; resulting flow rate q(cong) =
1210 vehicles/h. In (b) single-vehicle speed data are presented by regions with variable darkness
(the lower the speed, the darker the region; in white regions the speed is higher than 20 km h−1).
Single-lane model (7)–(25) without bottlenecks with cyclic boundary conditions.

this vehicle motion. The growth of these disturbances led to the formation of a wide moving
jam(s) propagating upstream7.

Qualitatively the same traffic congestion conditions as those occurring at heavy bottlenecks
shown in figure 2(c), (d) can be simulated on the single-lane circle road without bottlenecks,
if we now gradually increase the initial vehicle density on the circle road in comparison
with pinch effect conditions shown in figure 25(b), (c). These simulations are presented in
figure 26. For the average flow rates q(cong) ≈ 440 vehicles/h (figure 26(a)) and 220 vehicles/h
(figure 26(c)) in congested traffic on the circle road, which satisfy condition (32), we find
qualitatively similar non-regular jam dynamics as those for the same values of q(cong) at
heavy bottlenecks (compare figure 26(a) with figure 11 and figure 26(c) with figure 12).
Similarly, for the flow rate q(cong) ≈ 110 vehicles/h in congested traffic on the circle road that
satisfies condition (34) we find a non-regular mega-jam dynamics (compare figure 26(e) with
figure 15).

In sections 4.3 and 5, we have found that the complexity of the jam dynamics or the
mega-jam dynamics becomes the weaker, the more the distance upstream of the bottleneck
(figures 13 and 15). It can be assumed that the longer flow interruption intervals and moving
blanks propagate on a road, the less the degree of non-regularity in the dynamics of the

7 The experiment [45] is a very interesting and important one for a deeper understanding of moving jam emergence
in synchronized flow. However, both the statement of [45] that the spontaneous moving jam emergence occurs in
free flow as well as the associated physical explanation of the jam emergence are invalid. Indeed, in the experiment
vehicles could not overtake each other and the vehicle speed (30 km h−1) has been considerably lower than the speed
in free flow (usually higher than 80 km h−1 for passenger cars). Moreover, the initial density of the initially traffic flow
was ρ = Nveh/Lcircle ≈ 95 vehicles/km that is considerably greater than the maximal density observed in free flow,
which is usually appreciably smaller than 40 vehicles/km/lane. Therefore, rather than free flow, the initial traffic in
the experiment of [45] is congested traffic associated with the synchronized flow phase as that in simulations presented
in figure 25 [16]. Thus as in simulations (figure 25) [16], in driver experiment [45] the spontaneous emergence of
wide moving jam(s) in initial synchronized flow (S → J transition) is observed.

37



J. Phys. A: Math. Theor. 41 (2008) 215101 B S Kerner

(a) (b)

(c) (d)

(e) ( f )

(g)

Figure 26. Simulated single-vehicle speed data within wide moving jams (a)–(d) and mega-jam
((e), (f )) on circle road of length Lcircle = 1 km presented in space and time by regions with
variable darkness (the lower the speed, the darker the region). White regions (single-vehicle speeds
higher than 5.4 ((a), (b)), 3.6 ((c), (d)) and 1.8 km h−1 (e)–(g)) are related to synchronized flows
between the jams or moving blanks; black regions (single-vehicle speeds are equal to zero) are
related to flow interruption intervals. Nveh = 105 ((a), (b)), 119 ((c), (d)), 126 (e)–(g). Resulting
average flow rate q(cong) ≈ 440 ((a), (b)), 220 ((c), (d)), 110 vehicles/h (e)–(g). In all simulations,
vehicles start to move from a vehicle standstill at t = 0. With the exception of figure (g), initial (at
t = 0) space gaps between all vehicles are equal to each other; in contrast with (e), in (g) at t = 0
there is a blank only between two vehicles, whereas initial space gaps between all other vehicles
are equal to zero. Other model parameters are the same as those in figure 25.

jams and the mega-jam. This result we indeed find for both the jam dynamics and the
mega-jam dynamics on the circle road (see figures 26(b), (d), (f ) presenting, respectively,
the development of the congested patterns shown in figures 26(a), (c), (e) after 180 min
propagation of the patterns on the circle road). In particular, the non-regular dynamics of wide
moving jams shown in figures 26(a), (c) become almost regular ones after wide moving jams
propagate during 180 min on the road (figures 26(b), (d)).
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Thus we can expect that some of the spatiotemporal traffic phenomena in congested traffic
at a heavy bottleneck (sections 3–5) can also be found in a driver experiment on a circle road
without bottlenecks, if in the experiment the initial vehicle density increases leading to the
decrease in the average flow rate q(cong) in congested traffic on the road associated with values
of q(cong) in traffic congestion at heavy bottlenecks.

However, an emergent congested pattern on the circle road can qualitatively depend on
an initial distribution of space gaps between vehicles. An example is shown in figures 26(e),
(g): at the same average density ρ = Nveh/Lcircle = 126 vehicles/km depending on chosen
initial distributions of space gaps between vehicles we find either a non-regular mega-jam
dynamics (figure 26(e)) or a regular upstream propagation of a single region of moving blanks
(figure 26(g)). Thus it can assumed that for an adequate comparison of congested patterns
at heavy bottlenecks with congested patterns on a circle road without bottlenecks, a nearly
homogeneous initial distribution of space gaps between vehicles on the circle road should be
chosen.

6.6. Conclusions

Based on a study of traffic congestion with the Kerner–Klenov stochastic three-phase traffic
flow model and a heavy bottleneck model presented in the paper, we can make the following
conclusions:

(1) When the bottleneck strength, i.e., the influence of a bottleneck on traffic is not very great,
then traffic breakdown at the bottleneck occurring at large enough flow rates upstream
of the bottleneck results in a well-known general congested pattern (GP) [12]. As in
empirical GPs, in simulations the GP consists of the pinch region of synchronized flow
in which narrow moving jams emerge and grow propagating upstream; at a upstream
boundary of the pinch region, some (or sometimes all) of the jams transform into wide
moving jams, i.e., a sequence of the wide moving jams propagating upstream is realized.
When the bottleneck strength increases, then GP parameters change as earlier found
in theoretical studies of GPs occurring at various bottlenecks [12]: the average flow
rate in the pinch region and the mean pinch region width (in the longitudinal direction)
decrease, the frequency of the jams increases, the average speed between wide moving
jams decreases. However, we found that this regular spatiotemporal structure of the GP
remains at the bottleneck only, if the bottleneck strength does not exceed some critical
value.

(2) When the bottleneck strength increases further and it exceeds a critical bottleneck strength,
features of traffic congestion at such a heavy bottleneck change qualitatively. A pinch
region of synchronized flow within the GP disappears and appears randomly over time:
an GP with a non-regular pinch region appears at the bottleneck. The more the bottleneck
strength exceeds the critical bottleneck strength, the longer the mean duration of random
time intervals within which the regular structure of the GP breaks and the pinch region
disappears, and therefore, the smaller the mean width of the pinch region.

(3) There is a threshold bottleneck strength for the pinch region existence at which the pinch
region of a GP dissolves fully: at this and greater bottleneck strengths, the GP without
pinch region is formed, i.e., it consists of a sequence of wide moving jams, all of them
emerge directly at the upstream boundary of the heavy bottleneck.

(4) Wide moving jams of GPs with a non-regular pinch region and without pinch region can
exhibit a very complex and non-regular spatiotemporal dynamics. The jam dynamics is
associated with the effects of the emergence, splitting, dissolution and merging of flow
interruption intervals, which occur randomly within a sequence of wide moving jams.
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(5) The complex non-regular dynamics of traffic congestion of items 2–4 is explained by a
competition between the random nucleation of moving jams in metastable synchronized
flow and the random jam dissolution incorporated in the stochastic traffic flow model of
section 2.1 through the use of the speed adaptation in synchronized flow as well as random
time delays in driver acceleration and deceleration. As a result, simulations of the model
show that the greater the density in synchronized flows of the pinch region and between
wide moving jams upstream of the pinch region, the smaller the critical speed disturbance
(the smaller the nucleus) required for the moving jam nucleation, and consequently the
smaller the mean time delay of the jam nucleation. The density in the synchronized
flow increases with the increase in the bottleneck strength. The time delay of the jam
nucleation is a random value. When the bottleneck strength increases, the mean time
delay of the jam nucleation becomes a small enough value and therefore there are random
time intervals, when time delays of the jam nucleation are negligible: wide moving jams
emerge directly upstream of the bottleneck, i.e., the pinch region disappears. During
other random time intervals, when time delays of the jam nucleation are great enough, the
pinch region appears again. The subsequent increase in the bottleneck strength causes
the decrease in the mean time delay of the jam nucleation up to zero; as a result, all wide
moving jams emerge almost directly upstream of the bottleneck and the pinch region
disappears fully.

Simulations show that the similar random effect of wide moving jam nucleation
occurs in synchronized flow between wide moving jams. However, in comparison
with synchronized flows between wide moving jams propagating on a homogenous road
upstream of the bottleneck, there is an addition source of random speed fluctuations in
a neighborhood of the bottleneck caused by a longer safety time headway within the
bottleneck. This can explain why a non-regular pinch region appears at the bottleneck
at smaller bottleneck strengths than those required for the random jam nucleation in
synchronized flows between wide moving jams propagating on the homogeneous road far
away upstream of the bottleneck.

(6) There is also another critical bottleneck strength called the critical bottleneck strength
for the mega-jam formation, which is greater than the threshold bottleneck strength at
which the pinch region of a GP dissolves fully (item 3). When the bottleneck strength
exceeds the critical bottleneck strength for the mega-jam formation, wide moving jams
of the GP merge onto a mega-wide moving jam (mega-jam). The microscopic structure
of a mega-jam consists of alternating regions of flow interruption intervals and moving
blanks propagating upstream within the mega-jam. When wide moving jams merge onto
the mega-jam, traffic congestion upstream of the bottleneck cannot be considered as a GP
any more. The time-functions of average speed within the mega-jam exhibit a non-regular
behavior.

The merger of wide moving jams onto the mega-jam is realized when the average
flow rate in traffic congestion upstream of the bottleneck becomes as small as the average
flow rate of low-speed states associated with moving blanks within wide moving jams. In
this case, the difference between flows within and outside wide moving jams disappears;
as a result, wide moving jams should merge into the mega-jam.

(7) The microscopic structure of the mega-jam exhibits complex dynamics of alternating
regions of flow interruption intervals and moving blanks over time, i.e., during their
upstream propagation within the mega-jam. These effects can be explained by great
fluctuations of moving blanks and flow interruption intervals occurring during their
upstream propagation. These fluctuations are associated with lane changing as well
as with random time delays in vehicle acceleration and deceleration, which can make a
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great influence on a random low-speed vehicle motion resulting in moving blanks within
the jam. Moreover, a random time delay in vehicle acceleration from a vehicle standstill
within a flow interruption interval can cause fluctuations in the velocity of the downstream
front of the flow interruption interval.

(8) Results of items 1–7 allow us to conclude that the evolution of the traffic phases in
congested traffic, when heavy bottlenecks caused for example by bad weather conditions
or accidents occur in highway traffic, is as follows. The greater the bottleneck strength, i.e.,
the smaller the average flow rate allowed by the heavy bottleneck within the congestion,
the less the mean pinch region width (items 2 and 3). When the bottleneck strength
increases further strongly and it reaches the critical bottleneck strength for the mega-jam
formation (item 6), the pinch region does not exist and only the mega-jam survives and
synchronized flow remains only within its downstream front separating free flow and
congested traffic. Thus a congested pattern at such a very heavy bottleneck consists of
synchronized flow within the downstream front of the pattern and the mega-jam upstream
of the bottleneck.

(9) The characteristic spatiotemporal traffic phenomena of items 1–8, in particular the
occurrence of a GP with a non-regular pinch region, the non-regular jam dynamics, and the
mega-jam formation should occur when the average flow rate q(cong) in congested traffic
reaches small enough values. We can expect that the flow rate q(cong) characterizes the
bottleneck strength regardless of the cause of a bottleneck. Therefore, the characteristic
traffic phenomena found in the paper (items 1–8) should be expected upstream of any
heavy bottleneck or bottleneck sequence at small enough values of q(cong).8

(10) Results of a theory of traffic congestion at heavy bottlenecks (items 1–8) presented in the
paper can qualitatively explain why sequences of wide moving jams, which are observed in
1 min average measured data of congested patterns at usual bottlenecks, are not observed
in measured average data of non-homogeneous congested traffic occurring at very heavy
bottlenecks caused for example by bad weather conditions or accidents.
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Corrigendum

A theory of traffic congestion at heavy bottlenecks
Boris S Kerner 2008 J. Phys. A: Math. Theor. 41 215101

The first sentence in the caption of figure 15, ‘Fragments of figure 10(d) in larger scales in
the left (figures left) and right lanes (right)’ should be replaced by ‘Simulated single-vehicle
speed data within a mega-jam presented in space and time by regions with variable darkness
(the lower the speed, the darker the region). Left and right figures are related to the left and
right lanes, respectively’.
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